Asymptotic expansions for Riesz fractional derivatives of Airy functions and applications

نویسندگان

  • Nico M. Temme
  • Vladimir Varlamov
چکیده

Riesz fractional derivatives of a function, Dα xf(x) (also called Riesz potentials), are defined as fractional powers of the Laplacian. Asymptotic expansions for large x are computed for the Riesz fractional derivatives of the Airy function of the first kind, Ai(x), and the Scorer function, Gi(x). Reduction formulas are provided that allow one to express Riesz potentials of products of Airy functions, Dα x {Ai(x)Bi(x)} and Dα x { Ai2(x) } , via Dα xAi(x) and D α xGi(x). Here Bi(x) is the Airy function of the second type. Integral representations are presented for the function A2 (a, b;x) = Ai (x − a) Ai (x − b) with a, b ∈ R and its Hilbert transform. Combined with the above asymptotic expansions they can be used for computing asymptotics of the Hankel transform of Dα x {A2 (a, b;x)}. These results are used for obtaining the weak rotation approximation for the Ostrovsky equation (asymptotics of the fundamental solution of the linearized Cauchy problem as the rotation parameter tends to zero).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularized fractional derivatives in Colombeau algebra

The present study aims at indicating the existence and uniqueness result of system in extended colombeau algebra. The Caputo fractional derivative is used for solving the system of ODEs. In addition, Riesz fractional derivative of  Colombeau generalized algebra is considered. The purpose of introducing Riesz fractional derivative is regularizing it in Colombeau sense. We also give a solution to...

متن کامل

On Hadamard and Fej'{e}r-Hadamard inequalities for Caputo $small{k}$-fractional derivatives

In this paper we will prove certain Hadamard and Fejer-Hadamard inequalities for the functions whose nth derivatives are convex by using Caputo k-fractional derivatives. These results have some relationship with inequalities for Caputo fractional derivatives.

متن کامل

On the split-step method for the solution of nonlinear Schr"{o}dinger equation with the Riesz space fractional derivative

The aim of this paper is to extend the split-step idea for the solution of fractional partial differential equations. We consider the multidimensional nonlinear Schr"{o}dinger equation with the Riesz space fractional derivative and propose an efficient numerical algorithm to obtain it's approximate solutions. To this end, we first discretize the Riesz fractional derivative then apply the Crank-...

متن کامل

Some new Ostrowski type fractional integral inequalities for generalized $(r;g,s,m,varphi)$-preinvex functions via Caputo $k$-fractional derivatives

In the present paper, the notion of generalized $(r;g,s,m,varphi)$-preinvex function is applied to establish some new generalizations of Ostrowski type integral inequalities via Caputo $k$-fractional derivatives. At the end, some applications to special means are given.

متن کامل

Airy equation with memory involvement via Liouville differential operator

In this work, a non-integer order Airy equation involving Liouville differential operator is considered. Proposing an undetermined integral solution to the left fractional Airy differential equation, we utilize some basic fractional calculus tools to clarify the closed form. A similar suggestion to the right FADE, converts it into an equation in the Laplace domain. An illustration t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 232  شماره 

صفحات  -

تاریخ انتشار 2009